skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Driess, Matthias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Herein, the first report on the isolated and unambiguously proven benzene radical trianion is presented. This unprecedented radical oxidation state of benzene is stabilized through two trivalent rare earth (RE) metal cations each supported by a bis(guanidinate) scaffold. Specifically, the one‐electron chemical reduction of the neutral inverse‐sandwich yttrium complex [[{(Me3Si)2NC(NiPr)2}2Y]2(μ–ƞ66–C6H6)]1, containing a benzene dianion, with potassium graphite (KC8) in the presence of [2.2.2]‐cryptand yielded the title complex [K([2.2.2]‐cryptand)][[{(Me3Si)2NC(NiPr)2}2Y]2(μ–ƞ66–C6H6)]2, featuring a benzene radical trianion. Analyses through single‐crystal X‐ray diffraction, EPR and UV–vis spectroscopy, elucidated its molecular structure and revealed strong [YIII–(C6H6)3–•–YIII] metal–radical interactions. Although the Y centers remain in the +3 oxidation state, the spin density of the unpaired electron resides primarily on the benzene trianion moiety and extends toward the YIIIions. Density functional theory (DFT) calculations on2corroborate this assignment and further suggest weak aromaticity for the benzene radical trianion. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026